KAIST ID Lab
바로가기
본문 바로가기
메인메뉴 바로가기


International Journal

> Publication > International Journal

Title I. G. Jang and I. Y. Kim, “Application of design space optimization to bone remodeling simulation of trabecular architecture in human proximal femur for higher computational efficiency,” Finite Elem. Anal. Des., vol. 46, no. 4, pp. 311-319, 2010.
Hits 258 Date 2016-06-02 19:24
Link www.sciencedirect.com/science/article/pii/S0168874X09001553
File

  

Abstract:

 

Since the 1990s, topology optimization has been used to computationally investigate the bone remodeling under the assumption that bone remodeling progresses such that the bone material is used in a structurally optimal way. The foremost concerns in applying topology optimization to bone remodeling include the difficulty of handling large-scale problems and associated huge computational cost. In this paper, we applied a recently developed topology optimization algorithm, design space optimization (DSO), to bone remodeling simulation in order to determine trabecular architecture in human proximal femur with higher computational efficiency. We represented the full trabecular architecture in human proximal femur using a two dimensional micro-FE model with 50 μm pixel resolution and performed simulation under three load cases in daily activities. From the quantitative comparison with conventional topology optimization results as well as the actual trabecular architecture, it was shown that DSO produced structurally equivalent trabecular architecture with shorter computing time and smaller memory requirement. As future research, a three-dimensional bone remodeling simulation will require the preparation and management of tens of millions of FE elements, and therefore DSO would be essential to handle such a massive problem as a “more efficient” algorithm. 

Previous I. G. Jang and I. Y. Kim, “Computational simulat...
Next Y. Yu, I. G. Jang, I. K. Kyum, and B. M. Kwak, “...